
1

EDI用途における Web API利用ガイドライン

V1.0.0

インターネット EDI 普及推進協議会
Japan internet EDI Association（JiEDIA）

2

目 次

1.要旨 .. 3

1.1.はじめに... 3

1.2.ガイドライン作成の背景と目的 ... 3

1.3.ガイドライン化の範囲 ... 4

1.4.本ガイドラインが対象とする組織と想定する読者 4

1.5.本ガイドラインの利用上の注意事項 ... 4

2.Web APIとは ... 5

2.1.Web API活用にあたって ... 5

2.2.Web APIの特徴 ... 5

2.3.技術的要素... 6

2.4.Web APIの利用例 ... 9

3.Web APIを EDI で利用する場合の留意点 ... 9

3.1.EDIと Web API の違い ... 9

3.2.通信プロトコルとの機能比較 .. 10

3.3.API通信型の選定方針 .. 11

3.4.セキュリティ .. 12

3.5.データサイズ .. 20

3.6.ログ取得・トラッキング .. 22

3.7.信頼性.. 23

3.8.その他.. 24

3.9.API公開に関する考え方 .. 26

4.システム構築例 .. 27

4.1.センター側.. 29

4.1.1.システム開発者向け .. 29

4.1.2.運用担当者向け .. 36

4.2.クライアント側 .. 37

4.2.1.システム開発者向け .. 37

4.2.2.運用担当者向け .. 43

4.3.テスト項目.. 43

5.Appendix.. 44

5.1.導入時チェックシート .. 44

3

1.要旨

1.1.はじめに
NTT 東日本株式会社ならびに NTT西日本株式会社は、2024年から 2025年にかけて従来の

固定電話網（PSTN：Public Switched Telephone Network）を IP網（Internet Protocol）

へ段階的に移行する取り組みを進めてきた。

このネットワーク基盤の刷新は、音声通話サービスのみならず、多様なデジタル通信サー

ビスに広範な影響を及ぼすことになった。特に、企業間電子データ交換（EDI：Electronic

 Data Interchange）の分野においては、その安定性と信頼性から長年にわたり広範に利用

 されてきた「INSネットディジタル通信モード（ISDN）」が IP 網への移行に伴いサービス

 提供が終了するため、代替手段への移行が急務となっていた。

 こうした背景を踏まえ、多くの企業や業界団体が新たな EDI 通信基盤としてインターネッ

 ト EDI を選択し、移行が完了しつつある。インターネット EDI は、IP網の速度や柔軟性、

コスト効率性を活用し、従来の固定電話網に比べてより多様な通信プロトコルやセキュリ

ティ技術の適用が可能となるため、EDIの主流となりつつある。

インターネット EDI普及推進協議会（JiEDIA）では「通信回線の EDI 利用」という視点

から移行期における課題を整理、検討し、IP網に対応したインターネット EDI への安全な

移行推進を目的としてガイドラインの策定や技術支援、情報提供を行っている。

1.2.ガイドライン作成の背景と目的
 近年のクラウドサービスの急速な発展と普及に伴い、企業内外の多種多様なシステムや

アプリケーション間で、リアルタイムかつ効率的にデータを連携させるニーズが急速に高

まっている。従来、企業間におけるデータ連携の手段としては、標準化されたフォーマッ

 トと通信プロトコルを用いた EDI が広く利用されてきたが、システムの構築や運用に比較

 的大きなコストがかかることや、柔軟性に乏しいことなどが課題として指摘されてきた。

こうした状況を背景に、近年ではインターネット技術を基盤とする Web API を用いたデ

ータ連携が注目されている。Web API はリアルタイム性の高い連携やより柔軟なデータ形

式での情報交換を可能とする一方で、明確な仕様が定まっておらず、各企業が個別に設

計・運用を行っているのが現状であり、互換性や再利用性の面での課題が顕在化しつつあ

る。かつて、簡易的な企業間データ連携手段として利用が拡大した Web-EDI においても、

導入の手軽さから各企業が独自仕様でシステムを構築した結果クライアント側の対応負荷

が増大し、業務効率の低下を招くといった問題が生じた。

 このような過去の経験を踏まえ、インターネット EDI 普及推進協議会（JiEDIA）では、

APIを活用したデータ交換の健全な普及・発展を目指し、一定の基準を設けるべきとの考

えのもと、「EDI 用途における Web API利用ガイドライン」を策定する。本ガイドライン

は、APIの開発および運用に関する最低限必要な指針を示し、企業間データ連携の効率化

と安定的な運用を支援するものである。

4

1.3.ガイドライン化の範囲
本ガイドラインは、EDI（ファイル交換型）の枠組みにおいて、Web APIを補完的に活用

するケースを想定している。そのうえで、インターネット EDI において広く用いられてい

る通信プロトコルと同等レベルの運用形態を前提とし、Web APIを企業間データ交換に適

用する際の、汎用的かつ実践的な技術的・運用的指針を体系的に整理することを目的とす

る。なお、本ガイドラインは特定業界の業務プロセスや上位メッセージ仕様の標準化を目

的とするものではなく、異なる業種・業態間でも適用可能な、Web APIを EDI 用途で安全

かつ信頼性高く活用するための基盤構築を目的とした枠組みを提示するものである。

1.4.本ガイドラインが対象とする組織と想定する読者
本ガイドラインは、企業内外で異なるシステムやアプリケーション間のデータ連携に

APIを利用する、あらゆる組織を対象とする。具体的には、以下のような組織が想定され

る。

事業会社 サプライチェーン管理、顧客関係管理、マーケティング、IoT データ

活用など、様々な業務で API を利用する企業。

システム開発会社 企業向けに APIを設計、開発する SIer やソフトウェアベンダー。

サービス事業者 データ連携用途としての API を提供し、様々なシステムとの連携を可

能にする事業者。

業界団体 業界内でのデータ連携標準を策定するために、API 利用ガイドライン

を必要とする団体。

政府機関・自治体 行政サービスのデジタル化や、企業・市民とのデータ連携のために

APIを利用する組織。

システム開発者 APIの設計、開発、実装に携わるエンジニア。

システム管理者 APIの運用、保守、セキュリティ管理を担当する担当者。

システム企画者 APIを利用したシステム連携を企画する担当者。

業務担当者 APIを介して提供されるデータを業務で利用するユーザー。

本ガイドラインが、これらの組織や読者にとって API を効果的に活用し、安全かつ信頼性

の高いデータ連携を実現するための一助となれば幸いである。

1.5.本ガイドラインの利用上の注意事項
本ガイドラインに記載の内容は、Web API を EDI用途で利用する際の一般的な考え方お

よび設計上の留意点を整理したものである。実際のシステム構成や要件は、利用する通信

環境・取引形態・運用体制などによって異なるため、各社の実情に応じて適宜修正・補足

して活用することが望ましい。

技術情報については、2025 年 12月時点の技術動向、通信仕様、セキュリティ標準に基

づいて作成している。今後の技術動向や規格改定、関連ソフトウェアの更新により、内容

が変更となる可能性がある点に留意し、標準化団体等から発信される最新情報を確認のう

え、必要に応じて見直しを検討されたい。特にセキュリティ関連情報は更新頻度が高いた

め、常に最新の情報を参照することが重要である。

また、第 4章に掲載しているサンプルコードは、概念や処理の流れを理解しやすくする

ための例示であり、実際のシステム環境や要件によって実装内容は異なる場合がある。

5

特に、サンプルコードでは視認性の観点から設定値などをソースコード内に直接記載して

いるが、実際の運用においてはパラメータファイルや環境設定ファイルなどに外部化し、

適切に管理することを推奨する。したがって、掲載コードはあくまでも参考例として取り

扱われたい。

2.Web API とは

2.1.Web API 活用にあたって
Web APIを EDI用途で活用するにあたり、はじめに注意すべき点を整理する。

Web APIは、リアルタイムかつ直接的なデータ連携を前提に設計されており、システム間

の即時通信や疎結合な連携に適した技術である。一方で、EDI はファイルベースのバッチ

処理を中心とした運用が一般的であり、特に企業間取引においては長年の運用実績を持つ

通信プロトコルを活用することで、高い信頼性・安定性・セキュリティが確保されてきた

経緯がある。

このような背景から、現在の業務要件や既存の運用体制を維持したまま EDI を行う場合

には、Web APIではなく従来型の通信プロトコルを継続して利用する方が、現実的かつ合

理的であるケースが多い。実際、EDI を支える多くのシステムでは、ファイル形式やフォ

ーマット、通信時間帯、送受信順序、到達確認の方式などに関して厳密なルールが定義さ

れており、これらを Web API に適合させるためには、追加の設計や実装対応が不可欠とな

る。

さらに、Web API は即時性を前提としていることから、エラー発生時のリトライ処理、

セッション管理、通信結果の検証といった運用上の設計要素も従来以上に複雑化する傾向

がある。したがって、EDI と比較すると、Web API を活用して EDI を実現するためには設

計・運用両面において考慮すべき事項が多く、導入・維持の負担が増す可能性がある点に

留意が必要である。

しかしながら、昨今のビジネス環境は急速に変化しており、取引のスピードや柔軟性が

重視される傾向にある。こうした中、バッチ処理に適した EDI に加えて、リアルタイム性

を備えたデータ連携のニーズも徐々に高まりつつあり、将来的には業務システムがリアル

タイム処理へとシフトしていくことも想定される。

このような状況を踏まえ、EDIを補完する形で Web API を活用する過渡的利用モデルを

想定し、Web API を EDIの通信手段として活用する場合の考慮点や、具体的な実装モデル

について述べていく。

2.2.Web API の特徴
Web API（Web Application Programming Interface）とは、異なるソフトウェア間で通

信やデータのやり取りを可能にするインターフェースである。通常、Web API は HTTP

（Hypertext Transfer Protocol）を利用して通信を行い、リクエストとレスポンスの形式

でデータを交換する。リクエストには HTTP メソッドが使用され、レスポンスは一般的に

JSON（JavaScript Object Notation）や XML（eXtensible Markup Language）といった軽

量なデータ形式が用いられる。これにより、インターネットを介したシステム連携が容易

になるといった特徴がある。また、認証方式には API キーや OAuth、JWT（JSON Web

Token）などが使用される。

6

2.3.技術的要素
一般的な Web API で使用される技術的要素を以下に示す。

 ①HTTP/HTTPSプロトコルの使用

 多くの Web APIは、HTTPまたは HTTPS プロトコルを使用して通信を行っている。

 これにより、インターネット経由でのデータ送受信が容易になり、さまざまなクライア

 ントからのアクセスが可能となる。

 ②リクエストとレスポンスのモデル

 クライアントがサーバーにリクエストを送ると、サーバーはレスポンスを返す。

 リクエストは通常、HTTPメソッドを使って送信される。

 ③データ形式の標準化

 一般的に、Web API では JSON や XML などのデータ形式が用いられる。

 ④認証とセキュリティ

 API にアクセスするためには認証を必要とする場合が多い。

 例えば、API キー、OAuth、JWT（JSON Web Token）などの方法がある。

 ⑤アーキテクチャ

 Web APIで一般的に用いられるアーキテクチャとその特徴は以下の通り。

 ・SOAP (Simple Object Access Protocol)

 XML をベースとしたメッセージングプロトコルであり、WSDL (Web Services

 Description Language) によってインターフェースが定義される。

 堅牢で標準化されたプロトコルを必要とする場面に適している。

 ・REST (Representational State Transfer)

 リソースという概念を中心に設計されたアーキテクチャスタイルであり、HTTP メ

 ソッドを利用してリソースの状態を操作する。

 ステートレスな通信を基本とし、軽量な JSONや XML形式のデータ形式を扱うことが

 多いため、高いスケーラビリティと柔軟性を持つ。軽量で開発しやすいことから、

 Web API の主流となっている。

 ・GraphQL

 API のためのクエリ言語で、クライアントが必要なデータだけを効率的に取得可能。

 単一のエンドポイントに対して、取得したいデータの構造やフィールドをクライアン

 ト側で柔軟に指定できるのが特徴。

 ⑥URI (Uniform Resource Identifier)

 Web 上のリソースを一意に識別するための文字列である。RESTful API では、URIがリ

 ソースを表現し、その URIに対して HTTPメソッドで操作を行う。

 例: /users (ユーザーの一覧), /users/{id} (特定のユーザー)

 ⑦HTTP メソッド

 HTTP メソッドは、クライアントがサーバーに対して、指定されたリソースに対して

7

 どのような操作を行いたいかを伝えるためのものである。

主要なメソッドは以下の通り。

 GET: リソースの取得

 POST: 新しいリソースの作成

 PUT: リソースの完全な更新（置き換え）

 DELETE: リソースの削除

 ⑧ステータスコード

 API リクエストの結果を表す 3桁の数値であり、一般的な HTTP ステータスコードに

 準拠している。

代表的なステータスコードを以下に示す。

コード ステータス 意味 備考

1xx:情報レスポンス

100 Continue リクエストの初期部分は問題なし。

クライアントは処理を継続可能。

実運用ではあまり使用され

ない。

2xx:成功

200 OK リクエストが成功し、期待したレスポンスを

返した。

最も一般的。GETや POSTな

どで使用。

201 Created 新しいリソースが作成された。 POST での作成時に使う。

202 Accepted リクエストは受理されたが、処理は完了して

いない。

非同期処理など。

204 No Content 正常終了したが、返す内容がない。 DELETE などで使用。

3xx:リダイレクト

301 Moved

Permanently

リソースの URL が恒久的に移動した。

302 Found 一時的に別の場所へ移動した。

304 Not Modified 前回と内容が変わっていない。

キャッシュ利用を促す。

4xx:クライアントエラー

400 Bad Request 不正なリクエスト（構文エラーなど）。

401 Unauthorized 認証が必要。認証情報が不足または無効。

403 Forbidden アクセス禁止。認証済みでも権限がない。

404 Not Found 指定リソースが存在しない。

8

405 Method

Not Allowed

許可されていない HTTP メソッド。

409 Conflict リクエストが現在の状態と矛盾。

例：重複登録。

422 Unprocessable

Entity

内容は正しいが、意味的に処理できない。

バリデーションエラー等。

5xx:サーバエラー

500 Internal

Server Error

サーバ内で予期しないエラーが発生。

502 Bad Gateway ゲートウェイやプロキシからの無効な応答。

503 Service

Unavailable

サーバが一時的に利用不能

（過負荷、メンテ中など）。

504 Gateway

Timeout

上流サーバが応答しなかった（タイムアウト）。

 ⑨レートリミット

 レートリミットとは、一定期間内に APIを呼び出せる回数を制限する機能であり、

 サーバーの過負荷を防ぎつつ、すべての利用者に対して公平な利用を促すことを目的と

 している。

 主な制限の例は以下のとおりである。

 ・時間あたりのリクエスト数制限

 一定時間（例：1分、1時間）あたりの APIリクエスト数に上限を設ける。

 ・特定の操作に対する制限

 API の中でも、負荷の高い処理や頻繁な更新を伴う操作に対して個別に制限を設け

る。レートリミットを超過した場合、HTTP ステータスコード「429 Too Many

 Requests」が返されるのが一般的である。

 ⑩バージョン管理

 API の仕様が変更された際に、既存のクライアントへの影響を最小限に抑えるための仕

 組みである。一般的な手法としては、以下のようなものがある。

 ・URI にバージョンを含める方法

 例：https://api.example.com/v1/users

 メリット：最も一般的で理解しやすい。

 バージョンが URLに明示されるため、APIドキュメントとの整合性が

 とりやすい。

 ブラウザで直接アクセス・検証しやすい。

 デメリット：URIが長くなりやすい。

 URL構造がバージョンごとに変わるため、ルーティングやバージョ

管理が複雑になる。

9

 ・HTTP ヘッダーを使用する方法

 例：Accept: application/vnd.example.v1+json

 メリット：URLが変わらないため、リソースの一貫性が保たれる。

 デメリット：サーバ側でメディアタイプをハンドリングする必要があり、実装がや

 や複雑になる。

 バージョン情報が外部から見えにくいため、開発・テスト・デバッグ

時の可視性が低い。

2.4.Web API の利用例
 Web APIの利用例は多岐にわたるが、いくつか代表的なものを以下に示す。

 ・ソーシャルメディア API

 X（旧 Twitter）や Facebook の API を使って、外部アプリケーションから投稿したり、

ユーザー情報を取得したりする。

 ・地図 API

 Google Maps APIを利用して、アプリに地図を埋め込んだり、位置情報を提供したりす

る。

 ・決済 API

 Stripe や Amazon Pay の API を使って、オンラインで決済を処理する。

 ・天気 API

 OpenWeatherMapや Weatherstackなどを使って、天気情報を取得する。

 ・ファイルストレージ／クラウド API

 Google Drive や AWS S3 が提供する APIを使って、ファイルをクラウドストレージに保

存したり、既存のファイルにアクセスする。

3.Web API を EDI で利用する場合の留意点

3.1.EDI と Web API の違い
現在、企業間における商取引データ（受発注、出荷、請求など）の交換手段として、

EDI（Electronic Data Interchange）が広く活用されている。

EDIは、かつて紙ベースで行われていた企業間取引を電子化することを目的に発展してき

た経緯があり、導入・運用にはいくつかの前提条件がある。たとえば、データ送受信のた

めの「通信回線」や「通信プロトコル」、データ形式を変換する「トランスレーター」と

いった仕組みが必要であり、さらに業界団体や取引先企業間であらかじめ合意されたデー

タフォーマットやコード体系に準拠する必要がある。

また、EDI は業務プロセスのデジタル化の流れの中で発展してきたため、複数のデータを

一括で処理するバッチ型の運用に最適化されており、リアルタイム性の確保という点では

一定の課題が残されている。

これに対し、Web APIはシステム間のデータ連携ニーズを起点として設計された技術で

あり、基本的に HTTP/HTTPS など汎用的なインターネットプロトコルを用いて通信を行う。

そのため、専用の通信回線やプロトコルを必要とせず、標準的なネットワーク環境で容易

に導入・運用することが可能である。

また、Web APIはリクエスト／レスポンス型の通信方式を採用しており、バッチ処理に依

10

存せずにリアルタイム性の高い処理を実現できる。この特性により、在庫情報の照会やス

テータス確認など、即時性が求められる業務にも柔軟に対応できるほか、運用面でもきめ

細やかな制御や拡張が可能となっている。

近年、EDI と一部の Web API において、それぞれの利用環境や用途が重なりつつあり、

開発・運用現場では両者の使い分けや位置づけに関して混乱が生じているケースも見受け

られる。本章では、EDIと Web API の本質的な違いを踏まえたうえで、両者の適切な役割

分担と運用方法を整理することを目的とするが、特に EDI（ファイル交換型）の枠組みの

中で Web API を補完的に活用するケースに焦点を当てて記述する。

なお、Web APIの活用によって将来的にリアルタイム EDIの実現が期待されているもの

の、本ドキュメントではその検討は現時点では対象外とする。

以下に、EDI と Web APIの主な特徴をまとめる。

特徴 Web API EDI

主な目的 アプリケーション間で機能やデータを

リアルタイムに連携・利用。

柔軟なデータ連携、新たなサービス連

携の実現。

企業間の定型的な商取引文書の電子的交

換。

業務プロセスの効率化、手作業の削減。

技術基盤 インターネット

HTTP/HTTPS

専用回線またはインターネット

通信プロトコル

 (JX,全銀 TLS, EDIINT-AS2など)

柔軟性 比較的高い

（多様な連携、機能公開）

標準化されており限定的

（定型的な取引向け）

データ形式 JSON, XML など EDIFACT, ANSI X.12, 業界標準形式など

データサイズ 小量データ 小～大量データに対応

文字コード UTF-8など EBCDIC,ASCII など

主な利用者 不特定多数の開発者、システム 取引関係にある企業間

3.2.通信プロトコルとの機能比較
 Web API は、HTTP などの Web技術を使い、アプリケーションやサービス同士が機能やデ

ータをやり取りするための取り決めや仕組みである。Web API は通信プロトコルそのもの

ではなく、HTTP等のプロトコルの上に構築されたアプリケーション層の設計仕様である。

そのため、通信プロトコルと同列に比較することは適切ではないが、両者の役割や位置づ

けの違いを理解することは、Web API の本質を捉えるうえで有用と考える。

以下に、Web API と主要な通信プロトコルとの機能を比較する。

11

 Web API JX手順 全銀 TCP/IP

(広域 IP網）

ebXML MS V2.0 EDIINT-AS2

通
信
回
線

インターネット インターネット インターネッ

ト、専用回線な

ど

インターネット インターネット

メ
ッ
セ
ー
ジ
形
式

JSON/XMLなど XMLなど 固定長など XML XML など

セ
キ
ュ
リ
テ
ィ

SSL/TLSによる

通信暗号化

API キー、

OAuth、JWT など

SSL/TLSによる

通信暗号化

ベーシック認

証、クライアン

ト証明書

EDI標準に基づ

くメッセージセ

キュリティ、認

証

SSL/TLSによる通

信暗号化

全銀手順が持つ

ID、パスワード

など

SSL/TLSによる

通信暗号化

クライアント証

明書

EDI標準に基づ

くメッセージセ

キュリティ、認

証

SSL/TLSによる通

信暗号化

クライアント証明

書

EDI 標準に基づく

メッセージセキュ

リティ、認証

3.3.API 通信型の選定方針
 Web APIには、用途や通信特性に応じて複数の通信型が存在する。

 EDI用途において Web API を利用する場合は、リアルタイム性、信頼性、運用性などの観

 点から、目的に適した通信方式を選定することが重要である。

 以下に代表的な通信型の特徴を示す。

通信型 概要 特徴・用途

EDI 用途での

適合性

REST（同期型） クライアントがリクエストを送信

し、サーバが即時にレスポンスを

返す方式であり、HTTPベースの標

準的な通信モデル。

実装が容易であり、ス

テートレスなためスケ

ーラビリティを確保し

やすく、業務システム

との親和性が高い。

◎

取引データ送受

信など主要な処

理方式として最

適。

Pub/Sub（非同期

通知型）

サーバ側でイベントが発生した

際、メッセージキューや Webhook

等を介してクライアントに通知す

クライアントが定期ポ

ーリングを行わずとも

通知を受け取ることが

○

処理完了通知や

ステータス更新

12

る方式。 できるため、非同期イ

ベント通知に適する。

などに有効。

Streaming（常時

接続型）

クライアントとサーバが常時接続

を維持し、リアルタイムにデータ

を送受信する方式。

リアルタイム性が高い

が、接続維持コストが

大きく、監視・再接続

制御の設計が複雑とな

る。

△

リアルタイム監

視やイベント配

信など限定的な

用途に適する。

3.4.セキュリティ
 前述のとおり、EDIは企業間取引を背景に発展してきた経緯があり、その歴史的経緯か

ら「データの確実な送達」と「信頼性」に重きが置かれてきた。そのため、EDIで使用さ

れる通信プロトコルの多くは、セキュリティ機能を通信層に組み込んでいる。特に、イン

ターネットを利用した EDI では、より強固なセキュリティ対策が講じられている。

一方で、Web API においては、セキュリティ機能を通信プロトコル自体が標準で備えて

いるとは限らず、別途セキュリティ対策を実装・運用する必要がある。以下に Web API と

EDIのセキュリティ機能を比較する。

セキュリティ項目 Web API EDI

通信経路の暗号化 HTTPS HTTPS、専用回線など

クライアント認証 OAuth2, API キー, JWT, Basic

認証など

ベーシック認証、デジタル証明書、

IPアドレス制限など

認可

（アクセス制御）

スコープ制御やロールベース認

可など

基本的には取引先ごとの接続単位で制

御マスタ等で管理するため柔軟な制御

は難しい

改ざん検知 HMAC署名や JWT署名など 電子署名

レート制限・DoS 対策 API Gateway 等で可能 通常はサービス提供者側の制限のみ

で、柔軟性は低い

可用性・冗長性 クラウドベースで高可用性設計

が可能

サービス提供事業者に依存（高い信

頼性だが拡張性は限定的）

セキュリティ更新 開発側が随時更新可能（モダン

設計）

更新頻度は低く、規格変更は慎重

（レガシー基盤のことが多い）

 ①通信経路の暗号化

 EDI システムにおいてインターネットを利用する場合、通信経路の暗号化は情報漏えい

 や改ざんを防ぐために不可欠な要素である。SSL/TLS を利用して通信経路を暗号化する

ことで、ネットワーク上の盗聴や不正な改ざんを防止することができる。

13

 ＜EDI＞

 インターネット EDIが普及する以前は通信経路として閉域網や専用回線を利用するこ

 とが主流であったため、外部からの盗聴リスクは比較的低かった。そのため、暗号

化は主にインターネット通信手順を利用する場合に導入されることが多い。通信方式

や接続クライアントが固定されていることが多く、暗号化方式の変更や証明書更新も

計画的に実施可能であり、運用上の影響を最小限に抑えられる構成となっている。

 ＜Web API＞

 Web API はインターネットを介して多様なクライアントからアクセスされることを前

 提としているため、暗号化は必須要件であると同時に、以下のような点に考慮する必

要がある。

 ・証明書管理

 SSL/TLS 証明書の有効期限や中間証明書、ルート証明書の管理を徹底し、期限切れ

 による通信障害や接続トラブルを防止する。

 ・暗号化方式の選定

 利用する TLSバージョンや暗号スイートの選定に注意し、既知の脆弱性に対応する

 必要がある。互換性の確保と安全性の両立が求められる。

 ②クライアント認証

 EDI システムにおいて、通信相手の正当性を確認するクライアント認証は、セキュリテ

 ィ確保の重要な要素である。EDIと Web API では認証方式や運用方法に違いがあるた

め、設計段階で留意する必要がある。

 ＜EDI＞

 インターネット EDIが普及する以前は通信経路として閉域網や専用回線を利用するこ

 とを前提としていたため、外部からの不正アクセスリスクは比較的低かった。そのた

め、クライアント認証は主に接続 ID やパスワードなどの運用ルールによって管理され

ることが多い。また、一部インターネット通信手順において、プロトコル固有のクラ

イアント認証機能が利用されている。

 ＜Web API＞

 Web APIはインターネットを介して多様なクライアントからアクセスされることを前

 提としているため、クライアント認証は単なる ID/パスワード管理だけでは不十分で

 あり、技術的な仕組みとして組み込むことが求められる。

 具体的には、以下のような方式が利用される。

 ・OAuth 2.0

 ・APIキー

 ・JWT（JSON Web Token）

以下にそれぞれの特徴を述べるが、最終的な採用方式については、利用者側のシステ

ム構成、セキュリティ要件、運用方針に基づき判断いただきたい。

各方式には特性および適用範囲が異なるため、自社のリスク許容度および運用負荷を

14

考慮した上で選定することが望ましい。

項目 OAuth 2.0 API キー
JWT

（JSON Web Token）

目的 認可 主に簡易認証 認証とトークンベースの

情報伝達

特徴 高度な認可に向く。

外部サービス連携やユ

ーザーごとのアクセス

制御に適している。

最も簡単だが、セキュリ

ティ要件が高い環境には

適さない。

サーバーレス APIやマイク

ロサービスでのトークン

型認証に適しており、処

理が高速。

使われ方 サードパーティアプリ

に限定的なアクセスを

許可

アクセス制限のない基本

的な認証

認証後に発行し、トーク

ンでユーザー情報をやり

とり

特徴 認可とアクセストーク

ンによる権限管理

シンプルなトークンによ

る認証

トークンに署名を含み改

ざん防止できる

トークン形式 アクセストークン＋

リフレッシュトークン

単一のキー（文字列） ペイロード付きの JWT文字

列（Base64 エンコード）

セキュリティ 高

（設計次第で強固）

低

（漏洩すると完全アクセ

ス可能）

中〜高

（署名付き・期限付き）

認可の柔軟性 高

（スコープで操作制限

可）

低

（操作制限なし）

中

（トークン内容に依存）

有効期限 アクセストークンに期

限あり（短期）

任意

（一般的には無期限）

有効期限内であれば有効

メリット ・細かなアクセス制御

が可能

・安全な外部連携

・実装が簡単

・早く動く

・ステートレスで高速

・自己完結で情報を持て

る

デメリット ・実装が複雑

・セキュリティ設計が

必須

・漏洩リスクが高い

・制限しづらい

・トークンサイズが大き

い

・漏洩時のリスク高

 ③認可

 アクセスしてきたクライアントが正当なものであることを確認（認証）した後、「何に

 対して、どのような操作が許可されているか」を決定する。

15

 ＜EDI＞

 EDI における認可について、アクセス権限の制御はサービス提供者側の内部業務シス

 テムに集約されており、利用者ごとに細かく設定する仕組みはほとんど存在しなかっ

た。例えば、ある取引先は「受発注データの送受信が可能」といった大枠の権限を与

えられるのみであり、ユーザーやアプリケーション単位で「この種類の取引だけ」

「この処理は参照のみ」といった粒度での制御は想定されていなかった。

結果として、運用はシンプルな反面、柔軟性に欠けるという特徴があった。

 ＜Web API＞

 Web APIでは、クライアントの認証後に、ユーザーやアプリケーションごとに「許可

 された操作」や「アクセス可能なリソース」を細かく制御することが可能である。

 特に、Web APIでは以下のようなアクセス制御手法により、よりきめ細かく柔軟な運

 用が可能となっている。

 ・スコープ制御

 ・ロールベースアクセス制御

 ・属性ベースアクセス制御

 ・アクセスコントロールリスト

 このように、従来の EDIでは実現が難しかった柔軟なアクセス制御を可能とするため、

 Web APIの認可機能を EDI用途で活用する際には、アクセス権限の設計について十分な

 検討が不可欠である。

④（補足）OAuth 2.0認可方式の取扱い

 本ガイドラインにおける認証・認可は、OAuth 2.0 を利用することを前提としている。

OAuth 2.0 には複数の認可方式が存在するが、近年のセキュリティ動向や標準仕様の更

新により、利用が推奨される方式と、非推奨または廃止が検討されている方式がある。

以下に、2025 年 12月時点における代表的な認可方式の概要と推奨状況を提示する。

（1）推奨されるフロー

フロー名 概要 推奨度

Authorization Code Flow 認可コードを介してアクセストークンを取得する

方式。サーバ側で安全にトークンを処理できるた

め、Webアプリなどに適している。

◎推奨

Authorization Code Flow

+ PKCE

PKCE（Proof Key for Code Exchange）を併用

し、クライアントシークレットを持たない環境で

も安全に利用できる方式。

◎強く推奨

Client Credentials Flow クライアント自身の認証情報のみでトークンを取

得する方式。ユーザー操作を伴わない機械間通信

に適している。

◎推奨

16

Refresh Token Flow 有効期限が切れたアクセストークンを再取得する

ための方式。長期稼働システムや再認証を避けた

い環境で利用する。

○利用可

Device Authorization

Flow

入力装置を持たないデバイス（IoT 機器など）で

の認可に対応する方式。

○利用可

（用途限定）

（2）非推奨または廃止が検討されているフロー

フロー名 概要 非推奨理由

Implicit Grant 認可コードを介さず、トークンをブラウザ経由で直接

受け取る方式。

アクセストークン

が URL 上に露出

し、漏洩リスクが

高い。

Resource Owner Password

Credentials Grant (ROPC)

ユーザーID とパスワードを直接クライアントに入力さ

せる方式。

アプリがパスワー

ドを扱うため、漏

洩リスクが高い。

Plain PKCE

(code_challenge_method=pl

ain)

PKCE のハッシュ化（S256）を行わず、平文で送信する

方式。

保護効果がなく、

中間者攻撃に弱

い。

SAML 2.0 Bearer Assertion

Flow

SAML を使って OAuth トークンを取得する旧来方式。 OIDC（OpenID

Connect）への移

行が推奨されてい

る。

※今後の仕様改訂について

 タスクフォースで標準化が進められている OAuth 2.1 では、Authorization Code Flow

（PKCE対応）を標準方式として明示し、Implicit Flowと ROPC Flowは正式に削除さ

れる予定となっている。そのため、今後の実装や運用にあたっては、最新の情報を調

査した上でこれらの仕様変更を見据えた設計・更新計画を検討することが望ましい。

 ⑤改ざん検知

 データが送受信の過程で第三者により改ざんされていないかを検知する。これはデータ

 の完全性を保証するために不可欠な要素であり、誤発注や不正取引を防ぐ上でも重要で

 ある。

 ＜EDI＞

 インターネット EDIが普及する以前は通信経路として閉域網や専用回線を利用するこ

 とが主流であり、通信経路の安全性は比較的高かった。そのため、改ざん検知は主に

ファイル単位やジョブ単位でのチェックサムやハッシュ値によって行われることが多

い。一部のインターネット EDI プロトコルでは SSL/TLS を基本とし、さらに高度な改

ざん検知機能を備えている場合もある。

17

 ＜Web API＞

 Web API では SSL/TLS による改ざん検知を基本としつつ、データ本体にデジタル署名

 や HMAC署名を付与することで、より柔軟かつ強固な改ざん検知を実現できる。

以下に、2025 年 12月時点における代表的な改ざん検知方式の概要を提示する。

手法 内容 特徴

HTTPS/TLS

通信内容全体を暗号化して改ざんを

防ぐ

標準的。盗聴・中間者攻撃に

も有効

HMAC 署名

秘密鍵とリクエスト内容からハッシ

ュを作成。サーバ側で検証

内容の一部でも改ざんされる

と検知可能

JWT の署名検証

JWTトークンの署名をサーバで検証

（公開鍵 or 秘密鍵）

アクセス制御情報を含み、改

ざん検知と認可を両立

コンテンツ・ダイジェス

トヘッダ（Digest）

リクエスト/レスポンスの本文にハ

ッシュを付与し整合性を確認

HTTP 仕様（RFC3230/7616）に

も準拠

リクエストのタイムスタ

ンプ＋Nonce

一定時間内のリクエストのみ有効に

し、リプレイ攻撃を防ぐ

改ざん＋再送信の両方に対応

可能

API Gateway/WAFのシグ

ネチャ検証

API Gateway が署名・ヘッダ・ハッ

シュ等を一括検証 環境側で集中管理が可能

 ⑥レート制限/DoS対策

 外部からの過剰なアクセスや攻撃的なリクエストを制御し、サービス全体の安定性を確

 保する。特に EDIのように取引業務を扱うシステムでは、短時間のリソース逼迫であっ

ても業務停止に直結するため、十分な対策が求められる。

 ＜EDI＞

 専用回線や閉域網を利用した EDIの場合、同時接続数を制限することで、自然に

 レート制御や DoS 対策が実現されていた。送信されたデータはセンター側で管理され

 るため、処理の過負荷やサービス停止のリスクは低く、また契約単位での ID・パスワ

ード管理や IP制限によって、不正アクセスも運用ルールの中で制御されている。しか

し、近年ではインターネット EDIが主流となりつつあり、従来型の運用的な制御だけ

では十分でなく、URLを非公開にしたり、送信元 IP アドレスを制限するなどの追加的

な対策が必要となっている。

 ＜Web API＞

 Web APIはインターネットに公開されることを前提とするため、不特定多数からのア

 クセスが可能である。そのため、EDI のように「接続環境の制約による防御」に依

存することはできず、明示的に技術的な制御を実装する必要がある。

 具体的な対策としては以下が挙げられる。

 ・レート制限

 一定時間内に許容されるリクエスト数を制御し、過剰アクセスを抑制する。

18

 例えば、クライアントごとに秒間・分間・日間のリクエスト上限を設定し、上限を

 超えた場合は「HTTP 429（Too Many Requests）」を返却する、必要に応じて

 Retry-Afterヘッダで再試行可能時刻を通知する、といった対策を行う。

 ・IP制御

 不正な送信元からのリクエストを遮断するために、送信元 IPアドレスの制限やブラ

 ックリスト/ホワイトリストを活用する。

 ・バースト吸収

 一時的なアクセス集中（バースト）に対して、トークンバケット方式などを用いて

 吸収し、全体の処理能力を超えないように制御する。

 ・DoS／DDoS対策

 API Gatewayや WAF（Web Application Firewall）によって、異常なアクセスや不正

 トラフィックを検知・遮断する。異常検知は監視システムと連携し、自動でアクセ

 ス制御ルールを強化できるように設計する。

 ・監査・可視化

 取引先ごとのリクエスト数やエラー状況をログとして収集し、ダッシュボードで可

 視化することで、異常傾向を早期に把握する。これにより、正規業務と不正アクセ

スの切り分けが容易になる。

⑦可用性・冗長性

 サービスが停止すると、ユーザー企業の業務そのものに大きな影響を与えるため、可用

 性と冗長性を確保しておくことは極めて重要である。特に EDI のように取引データを扱

うシステムでは、一時的な停止が発注や配送、決済に直結するため、その影響範囲は広

い。

 ＜EDI＞

 専用回線や閉域網を利用した EDIでは、通信経路自体の安定性が比較的高く、センタ

 ー側では EDI エンジンやバッチ処理サーバを複数台構成することで一部の処理サーバ

が停止しても残りのサーバで処理を継続することが可能であるため、外部要因による

サービス停止のリスクは限定的である。

 さらに、ジョブやファイル単位で再送処理が可能な設計になっており、障害発生時に

 も運用ルールとしてリカバリできる仕組みが整備されている。つまり、EDI の可用

性・冗長性は、物理的冗長化と運用プロセスの組み合わせによって自然に担保されて

いたと言える。

 ＜Web API＞

 Web API はインターネットを介して公開され、多様な利用環境からアクセスされるこ

 とを前提としている。そのため、従来型の運用依存の冗長化だけでは十分でなく、技

術的な冗長性を設計段階で組み込むことが不可欠である。

 具体的には、以下のような設計要素を考慮する必要がある。

 ・冗長構成の設計

19

 Webサーバ、アプリケーションサーバ、データベース、API Gateway などの主要コン

 ポーネントを冗長化し、単一障害点（SPOF）を排除する。

 ・自動フェイルオーバー

 障害検知後、トラフィックを正常系サーバへ自動切替する仕組みを導入し、サービ

 ス停止時間を最小化する。

 ・負荷分散

 複数のサーバ間でアクセスを分散するロードバランサを利用し、処理能力の平準化

 と冗長性を両立する。

 ・監視・アラート

 サーバやサービスの稼働状況を監視し、異常発生時には即座に通知。障害の早期検

知と対応を可能にする。

 ・データの冗長化・バックアップ

 データベースやファイルストレージは複数拠点で冗長化し、障害やデータ損失に備

 える。

 ⑧セキュリティ更新

 EDI システムを安全に運用するためには、セキュリティ更新を計画的に実施することが

 不可欠である。EDIと Web API では、更新の対象や手順、影響範囲が異なるため、設計

段階から留意しておく必要がある。

 ＜EDI＞

 専用回線や閉域網を利用した EDIでは、インターネット経由の脅威は限定的であっ

た。インターネット EDIが普及した現在においても、SSL/TLS 証明書や各種ミドルウ

ェア・ライブラリの更新、脆弱性対応などは、定期的な運用作業として管理される

ことが多く、更新による業務影響も比較的抑えやすい環境である。

 また、通信方式や接続クライアントが固定されているため、証明書更新や暗号化方式

 の変更も事前に調整して計画的に行うことが可能である。運用担当者は、更新手順を

 マニュアル化し、障害発生時のリカバリ手順を整備することで、サービス停止や接続

トラブルを最小限に抑えることができる。

 ＜Web API＞

 Web APIはインターネット公開が前提であり、多様なクライアント環境からのアクセ

 スが想定される。そのため、セキュリティ更新の影響範囲は EDIに比べてはるかに

 広く、更新作業自体を慎重に設計することが求められる。

 具体的には、以下のポイントが重要である。

 ・証明書管理

 SSL/TLS 証明書の有効期限管理を徹底し、期限切れによる通信障害を防止する。更

 新時には、クライアント側で中間証明書やルート証明書の更新が必要な場合もある

 ため、事前通知や手順整備が重要である。

20

 ・ライブラリ・フレームワーク更新

 利用するライブラリや APIフレームワークの脆弱性対応を定期的に実施する。更新

 時には互換性や API仕様への影響を検証することが必要である。

 ・セキュリティパッチの適用

 OSやミドルウェア、データベースのセキュリティパッチも対象である。自動適用と

 手動適用のポリシーを明確化し、更新時の影響を最小化する設計が望ましい。

 ・事前通知・運用調整

 クライアントに影響が出る更新は事前通知を行い、更新作業時間を調整することで

 業務への影響を抑えることが重要である。

3.5.データサイズ
Web APIはリアルタイムでのシステム間連携を前提として設計されており、小規模かつ

高速な通信に適している。そのため、EDI のようにファイル単位で大量のデータを一括送

受信する用途には必ずしも最適ではない。EDI用途で Web API を利用する場合、大量デー

タの送受信はパフォーマンスやレスポンスに大きく影響する。そのため、データサイズに

応じた適切な設計と実装が必要である。

本ガイドラインでは、データサイズに応じた実装イメージとして、以下の 2つの方式を

参考として提示する。

 直接送受信 間接送受信

概要 EDIのように、Web APIを利用して

直接トランザクションファイルを

送受信する。

大量データ送受信時の負荷を分散す

るため、トランザクションファイル

は外部ストレージなどに保管し、Web

API では送受信に必要な最小限の情

報のみをやり取りする。

処理対象 トランザクションデータ本体 設定ファイルまたはメタデータ

データ量 小〜中程度に適する 大容量に適する

API 負荷 高め（分割・圧縮などが必要） 軽量（通知・状態管理中心）

実装・運用の

複雑性

中

API内で全処理を担う必要がある

高

外部ストレージの管理や通知フロー

の設計など、追加の管理項目が発生

することで運用全体が複雑化する可

能性がある

21

■直接送受信方式

 Web APIを利用して、トランザクションデータそのものを直接送受信する方式。

 この方式は少量データの送受信に適しているが、大量データを扱う場合には以下の点に

 注意が必要である。

 ①データ分割

 トランザクションデータを複数ファイルに分割し、1件あたりのデータ量や件数に上限

 を設けてシステム負荷を軽減する。分割方式（件数単位、サイズ単位、伝票単位など）

は事前に取り決めておく。

 ②専用エンドポイントの設置

 大量データ送受信時のシステム負荷を軽減するために、通常のエンドポイントとは別

に、バルクデータ専用のエンドポイントを設け、処理の分散と効率化を図る。

 ③ペイロードの圧縮

 通信帯域の効率化を目的にトランザクションデータを圧縮する。クライアント／サーバ

 ー双方が対応している必要がある。圧縮方式（gzipなど）は事前に取り決めておく。

 ④タイムアウト設定

 通信の種類や処理内容に応じた適切なタイムアウト値を設定する。

 ⑤再送処理（リトライ）

 通信エラー時のアクション、最大リトライ回数、待機間隔などを検討、定義する。

 ⑥セッション管理

 セッションタイムアウトの発生がトラブルの原因となりやすいため、通信経路上のセッ

 ション有効期間や制御方式について事前に確認・共有しておく。

 ⑦ストリーミング対応（可能であれば）

 メモリに全データを保持せずに逐次処理を行うことで、パフォーマンスと安定性を向上

 させる。

22

■間接送受信方式

 トランザクションデータを外部ストレージに格納し、Web API ではその参照や管理のみを

 行う方式。この方式は、大量データを扱う際に通信負荷を抑えつつ、効率的なデータ処理

を実現できる点が特長である。ただし、直接送受信方式における注意点に加えて、以下の

点にも留意する必要がある。

 ①ファイル管理とメタ情報の分離

 トランザクションデータはファイルとして保管し、API ではファイル名・種別・送信日

 時などのメタデータをやり取りすることで、API の負荷を抑える。

 ②安全なファイル転送手段の選定

 SFTP、HTTPS 経由の署名付き URL（例：AWS S3 の Pre-signed URL）など、安全性の高

 い手段で転送を行う。

 ③ファイル保存期間・責任分界の明確化

 ファイルを一時的に保管する場合、保存期間や管理責任範囲を明示することで、トラブ

 ル時の対応を明確にする。

3.6.ログ取得・トラッキング
 EDI において、ログ取得やトラッキングは運用上重要な機能であり、特に取引履歴の証

 跡管理や障害発生時の原因追跡、監査対応に不可欠な要素である。Web API はリアルタイ

ム通信が前提であり、多様なクライアントや多地点からのアクセスが可能であるため、ロ

グの粒度や種類などにおいて EDIと同等以上の情報を取得し、ユーザーに適切に提供・可

視化する設計が求められる。

APIゲートウェイやトレースツール等を活用することで、アクセスログ・操作ログ・エラ

ー情報・リクエスト ID等を取得、統合管理することが望ましい。また、ユーザー視点か

ら、EDIと同環境でワンストップで情報を把握できることが理想的である。

以下に、一般的に取得されるログ項目を比較する。

項目 Web API EDI

送信元/宛先情報 クライアント ID、IPアドレス、

ユーザーID、API キーなど

送信元 ID、受信先 IDなど

（プロトコルに応じる）

23

送受信日時 タイムスタンプ

（秒・ミリ秒単位）

通信確立日時・ファイル送受時間

通信ステータス HTTPステータスコード HTTP ステータスコード、通信プロトコ

ル等が持つ正常終了/エラーコード、

業務アプリケーションからのステータ

スコードなど

取引 ID UUID、リクエスト ID、

X-Correlation-IDなど

メッセージ ID・電文識別子など

エラー APIレスポンスメッセージ、

例外ログ、スタックトレース

回線断、フォーマット異常など

データ件数 ヘッダ情報、件数カウントが必要 ヘッダ情報、件数カウントが必要

操作ユーザー情報 JWTトークンや OAuth認可情報から

特定可

基本的になし

（システム単位の認証）

署名・認証記録 HMAC署名、JWT署名、

OAuth認可ログあり

電子証明書

トラッキング ID API Gateway や Tracingシステムで

一元管理

専用ミドルウェアや VANなど

ログ保存先 クラウドログ

（例：CloudWatch, ELK, Datadog な

ど）

専用ミドルウェアや VANなど

トレーサビリティ 相関 IDによりサービス横断の

処理可視化

専用ミドルウェアや VANなど

3.7.信頼性
EDI は業務の中核を担うシステム間連携手段として広く利用されており、取り扱うデー

タの重要性からも、高い信頼性の確保が必須とされている。そのため、Web API を EDI の

通信手段として活用する場合においても、「通信が可能であること」だけでなく、「デー

タが確実に届き、正しく処理されること」を前提とした設計および運用が求められる。以

下に、その実現に向けて留意すべき点を整理する。

 ①到達確認

 確実に送受信が行われたことを確認するためのレスポンス設計や、ログを記録する仕組

 みが必要である。HTTPステータスコードに加えて、アプリケーションレベルでの応答を

 活用し、システム間で明確に通信成功を判断できるようにする。

 ②重複検知

 ネットワークやアプリケーション等の障害によって、同一データが誤って複数回送信さ

 れる可能性がある。受信側がそのまま処理を行ってしまうと、二重発注や二重請求とい

24

った業務上の不具合につながるため、システム側で重複リクエストを検知・排除する仕

組みを設ける必要がある。

 (1)重複検知の目的

 ・一意性の確保

各メッセージに固有の識別子を持たせ、他のメッセージと区別する

 ・再送時の安全性

送信側が再送した場合でも、受信側が同一メッセージと判断して二重処理を

回避できる

 ・整合性の担保

送信・受信の状態管理と組み合わせることで、処理の不整合を防止できる

 ・追跡性

メッセージごとに識別できるため、ログ追跡が容易になる

 (2)メッセージ IDの利用

 重複検知のキー情報としては、メッセージ ID を利用するケースが一般的である。

 送信側（クライアント）は、各 EDIメッセージに対して一意な ID（MessageID や

 TransactionID など）を生成し、必要に応じてタイムスタンプ等と組み合わせてデ

 ータに付与する。これにより、受信側は「すでに処理済みのメッセージかどうか」

を判断できる。

 ③再送制御（リトライ制御）

 通信エラーやタイムアウトなどによる回線断が発生した際に、同一データを再送する仕

 組みを検討する。

 ④改ざん検知

 通信経路上でデータが第三者により不正に変更されていないことを検証するための仕組

 みを検討する。具体的な手法としては、「3.4.セキュリティ」の「●改ざん検知」を

参照されたい。

 ⑤通信制限

 EDI は特定の取引先との通信を前提としており、不特定多数からのアクセス集中は想定

されていない。そのため、大量データの送受信に対しては負荷分散が施されているもの

の、過負荷対策自体は重視されてこなかった。一方、Web API はインターネット経由

での接続が前提であるため、DoS攻撃や過剰なリクエストによるシステム負荷を防ぐ必

要がある。そのため、リクエスト数を制限するレートリミットの導入が重要となる。

 具体的な手法としては、「3.4.セキュリティ」の「●レート制限/DoS 対策」を参照され

 たい。

3.8.その他
 システム面以外において、Web API を EDI 用途で運用する上で考慮が必要な点をその他

として整理する。

 ①障害時対応

 エラーハンドリングの明確化やユーザーへの障害通知、ユーザー対応など、現在の EDI

25

 で行っている対応を踏襲することが望ましい。

 ②変換処理

 フォーマットや文字コードの変換が必要な場合には、専用のユーティリティを実装する

 ことを検討する。例えば、固定長フォーマットから JSON/XML 形式への変換や、EBCDIC

 から UTF-8への文字コード変換など、EDIでの実装は負荷が大きいケースが多い。

 これらの処理を Web API の周辺機能として実装することは、Web API の柔軟性を活かし

 た有効な手段といえる。

 ③エラー処理

 API でエラーが発生した場合に、適切なエラーメッセージをユーザーに返送する。

 エラーメッセージやエラーコードについては、EDIで利用されているものを踏襲し

 つつ、HTTP ステータスコードを適切に活用し、必要に応じて詳細情報をレスポンスボ

 ディで返却することが望ましい。なお、エラーメッセージやエラーコードの標準化は、

 業界固有のルールや業務内容に依存する場合が多く、統一的な標準化は困難である。こ

のため、本ガイドラインではエラーメッセージに関する標準化は対象外とする。

 ④ログ管理

 EDI では問題発生時の切り分けのために多様なログが取得されている。

 Web APIにおいても、アクセスログや処理ログなどを可能な限り記録し、トラブル

 シューティングや監査に活用できるようにすることが望ましい。

 特に「データを受信したかどうか」に関する確認は頻繁に発生するため、受信状況を確

 実に把握できるよう、該当ログを確実に記録・保管しておくことが重要である。

 ⑤バックアップと復旧

 データロストに備え、責任の所在や保存期間などについて、事前に関係者間で明確に

 取り決めておくことが望ましい。また、システム全体のバックアップ体制および復旧方

 針についても、SLA（サービスレベル合意）を踏まえて事前に合意を得ておく必要があ

 る。

 ⑥ドキュメント

 API の利用方法や仕様を明確に記述したドキュメントを提供し、利用者がスムーズに API

 を利用できるようにする。

 ⑦API 管理

 API のライフサイクル全体を管理するための仕組みを検討する。APIゲートウェイなどを

 活用して、APIの公開、バージョン管理、利用状況の把握などを行う。

⑧コスト管理

 API の運用コストを把握し、必要に応じて最適化を行う。クラウドサービスを利用する

 場合など、料金体系の把握と請求金額をモニタリングしておくことが望ましい。必要な

場合は為替レートにも注意する。

 ⑨変更管理:

 API に変更を加える際には、影響範囲を十分に考慮し、適切なテストやリリース手順を

26

 踏んで実施する。APIのバージョン管理を適切に行い、下位互換性を可能な限り維持す

る。

 ⑩接続テスト環境の準備

 クライアントが自由に接続テストを実施できるよう、本番環境とは別に接続テスト環境

 を用意しておくことが望ましい。

3.9.API 公開に関する考え方
 Web API を外部（取引先企業など）に公開する場合、通信の安全性を確保するだけでな

く、「誰が・どのように・何を」利用できるのかといったアクセス管理と運用ルールの整

備が不可欠である。以下に API公開にあたっての主な留意点を整理する。

 ①公開範囲の明確化

 API を「完全公開（パブリック）」するのか、「限定公開（取引先限定）」とするの

か、明確に定義する。EDI用途の場合、基本的には取引先限定のプライベート APIとし

て運用するケースが一般的であると考える。

 ②API 仕様の整備と提供

 利用者が正しく API を実装できるように、以下の情報を含んだ「API 仕様書」を提供す

る。

 ＜概要＞

 エンドポイント一覧

 認証・認可方式

 パラメータ定義

 レスポンス例・エラーコード定義

 レート制限・注意点など

 ＜セキュリティ対策＞

 API 認証方式の導入

 IP制限やアクセス元制御

 TLS による暗号化

 利用ログの取得と監査

 ③ライフサイクル管理

 API のバージョン管理（例：v1, v2）を行い、互換性や移行パスを明確にする。

 廃止予定の APIに対しては事前告知期間を設け、ユーザーに影響が出ないよう段階的に

 対応する。

 ④公開プロセスと承認フロー

 API の新規公開・変更・廃止には、システム部門・セキュリティ部門・業務部門などに

 よる承認プロセスを通すことで、品質と統制を担保する。

 ⑤利用者管理・契約管理

 API 利用者（クライアント）の登録・認可・識別（クライアント管理）を厳密に行う。

27

 特に EDI用途では、API利用は業務契約に基づくことが多いため、契約と API 利用権限

 の紐づけを明確にする仕組みが必要となる。

 ⑥API 管理基盤の活用

 API Gateway を活用することで、上記のようなアクセス制御・認証・監視・レート制

 限などの管理を一元的に実施することが可能である。EDI用途ではプライベートなネッ

トワーク内での運用が一般的であるため、API Gateway を導入するケースは少ないが、

特定の機能をうまく取り入れることでセキュリティ向上や運用負荷の軽減につながる可

能性があるため、考慮されたい。

4.システム構築例

本章では、システム構築例をセンター側およびクライアント側のシステム設計者ならびに

運用担当者向けに提示する。ここで示す内容は、あくまで参考であり、実際の環境・要件に

応じて適宜調整することを前提とする。

各設定は以下の通りとする。

 ①想定するプレイヤーとストーリー

 (1)センター

 EDI 環境を継続運用しつつ、新たに Web API 環境を併設して提供する。

 セキュリティ強度および運用レベルについては、EDI 環境と同等以上を

 維持することを前提とする。

 (2)クライアント

 センターが提供する Web API 環境に接続し、データ交換を実施する。

 ②ユースケース

クライアント環境 センター環境

28

 ③設定

設定項目 設定値 理由・補足

交換方式 直接送受信 構成がシンプルで、広く利用されてい

る直接送受信方式を対象とする。

API 通信型 REST

（同期型）

Web APIで標準的に利用されているた

め。

通信経路の暗号化 HTTPS

（TLS 1.2 以上）

セキュリティ確保のため TLS1.2以上を

必須とする。

クライアント認証 OAuth 2.0 セキュリティ強度の観点から OAuth を

利用する。

認可 サービス提供者側管理に従う EDI 用途において複雑な認可は不要と考

え、従来のサービス事業者側での管理

方式に従う。

タイムアウト時間 30～60秒 ファイルサイズに起因する処理遅延を

想定した時間を設定する。

タイムアウトの判断基準はネットワー

ク機器を含めた全体のスループットで

はなく、サーバからの応答時間に基づ

いて設定する。

自動リトライ なし データ重複を避けるため、自動リトラ

イは行わない。

データサイズ ～10MB程度 大量データは想定しない。

データ圧縮 なし 大量データは想定しない。

ファイル形式 従来形式（固定長、XMLなど） 従来型の EDI ファイル形式に従う。

ファイル送信形式 バイナリデータ送信

（Content-Type:

application/octet-stream）

ファイルデータを APIで扱いやすくす

る。

署名/ハッシュ検証 SHA-256 改ざん検知、内容完全性を確認する。

レスポンス設計 ステータスコード 成否判定とエラー内容を明確化する。

エンドポイント URL クライアント＞データ種ごとに

用意

例：

/api/v1.x/customer1/order/yyyymmddh

hmmss

/api/v1.x/customer1/invoice/yyyymmd

dhhmmss

29

4.1.センター側

4.1.1.システム開発者向け
 センター側環境は提供事業者によって大きく異なるため、具体例の提示は困難である。

 そこで、従来の EDI基盤に Web API機能を追加する場合において一般的に考慮すべき要素

を上記設定を基に記載する。

 ■A-1.機能

 ①通信セキュリティ

 (1)暗号化通信

 ・HTTPS（TLS1.2 以上）による暗号化通信の実装

 ・将来の標準化動向に備え、TLS1.3 への対応を推奨

 (2)証明書管理

 ・サーバ証明書の導入および適切な管理

 ・有効期限切れによる通信断を防止するための更新プロセス整備

 ・自動更新機構（例：ACME プロトコル等）の導入を検討することが望ましい

 (3)アクセス制御

 ・ファイアウォールによる不正アクセス防止

 ・WAF によるアプリケーション層の攻撃対策（SQL インジェクション、XSS 等）

 (4)監査・トレーサビリティ

 ・通信ログの取得と長期保存

 ・認証・認可操作を含む監査ログの確保

 ・障害解析・不正調査に活用可能なトレーサビリティの確保

 ②認証・認可

 (1)利用者認証

 ・OAuth2.0 に基づく認証方式を採用し、クライアントごとのアクセストークンを

 発行・管理する

 ・必要に応じてクライアント証明書や ID プロバイダ連携（OpenID Connect 等）を

 組み合わせ、信頼性を高める

 (2)認可モデル

 ・利用者の権限管理は、EDIでの管理手法に準拠

 (3)多要素認証

 ・セキュリティリスクの高い操作に対しては、多要素認証の利用を検討する

 ・ワンタイムパスワード、端末証明書、生体認証などを組み合わせることで、

 不正利用リスクを低減

 (4)運用考慮

 ・アクセストークンの有効期限・失効管理（強制失効、期限切れ時のリフレッシュ

 処理）

 ・認証・認可のログ取得と監査証跡の保持

 ③API 設計・実装

 (1)インタフェース設計

 ・REST（同期型）を採用し、REST/JSON を基本としたリクエスト／レスポンス

30

 定義

 ・必要に応じて XML形式や SOAP との互換性を検討

 （EDI との親和性確保のため）

 ・リクエスト IDの付与により、トランザクション単位での追跡性を確保

 (2)ファイル送受信 API

 ・アップロード／ダウンロード機能を提供

 ・10MB 程度までのファイルサイズに対応（multipart/form-data 等を利用）

 ・offset や limit といったパラメータによるオーバーフロー防止

 (3)バージョン管理

 ・URI でのバージョン付与（例：/v1/, /v2/）

 ・旧バージョンの並行稼働期間を定め、利用者への移行を計画的に実施

 ・メジャーバージョンに対する対応方法

 → URIに含まれるメジャーバージョンを更新する

 → 後方互換を保つため、一定期間バージョンの並行運用を行う

 ・マイナーバージョンに対する対応方法

 → 既存パラメータはそのまま、新たなパラメータを追加することで

対応する

 (4)エラーハンドリング

 ・HTTP ステータスコードに基づく統一的なエラーレスポンス

 ・アプリケーションエラーコードを付与し、業務上の意味を明示

 ・冪等性確保（同一リクエストの再送に対して安全に処理できる設計）

 (5)URI設計と後方互換性

 ・既存クライアントとの後方互換性を確保する

 ・URI にメジャーバージョンと API名を含める

 ・リソース指向の設計とし、パスを短くする

 ・URI にサーバ側アーキテクチャ情報を反映させない

 ・スペース、エンコードを必要とする文字を利用しない

 ④信頼性・可用性

 (1)再送・重複検出

 ・再送による二重処理を防ぐため、メッセージ IDや取引番号を用いた重複検出の

 仕組みを実装する

 ・EDI で一般的だった「送信済／受信済ステータス管理」の考え方を API 設計

 にも反映させることが重要。

 (2)スケーラビリティ確保

 ・高負荷時にも安定稼働できるよう、API サーバの水平スケールアウトを前提と

 した設計とする。

 ・レート制限やスロットリングを組み合わせ、サービス全体のリソースを保護

 する。

 (3)フェイルオーバー／冗長化構成

 ・システム障害やネットワーク障害に備え、冗長構成（アクティブ-アクティブ／

 アクティブ-スタンバイ）を導入する。

 ・フェイルオーバー時に取引が途切れたり、二重処理が発生したりしないよう、

 取引状態を共有できる仕組みを準備する。

 ・障害時の切替時間（RTO）やデータ損失許容範囲（RPO）を明確化し、ユーザー

31

 に周知しておくことが望ましい。

 ⑤使用性

 (1)使用方法の公開

 ・提供する API に関連する業務内容および API の使い方をドキュメントとして公開

 し、利用者が仕様や利用手順を容易に理解できるようにする

 (2)APIシミュレータ

 ・API シミュレータを用意し、サンプルデータを用いたリクエスト／レスポンスを

 実際に試行できる環境を提供することで、接続試験や動作確認を容易にする

 (3)情報提供

 ・開発者向けサイト等を通じて、APIキーの発行、サンプルコード、FAQ などの

 補助情報を一元的に提供する

 ⑥運用管理

 (1)利用者別ログ管理

 ・利用者単位でのアクセスログ・処理ログの取得

 ・ユーザー自身による照会を可能とする証跡管理機能の提供

 (2)サービス利用制御

 ・契約に基づく SLA（応答時間、可用性など）の監視と管理

 ・利用可能時間帯の制御（例：深夜バッチ処理との調整）

 (3)障害通知機能

 ・エラー発生時のレスポンスコードや詳細メッセージの返却

 ・障害や異常を検知した際のメール／アラート通知

 (4)運用監視

 ・死活監視（稼働確認、ヘルスチェック APIなど）

 ・リソース監視（CPU、メモリ、ネットワーク帯域、ストレージ使用量など）

 (5)運用補助機能

 ・データの再投入（リトライ、リカバリ処理）

 ・障害発生時における代替手段の提供（代替 API、バックアップルートなど）

 ⑦セキュリティ対策

 (1)入力値検証

 ・クライアントから送信されるリクエストパラメータやファイル内容について、

 インジェクション攻撃（SQL、コマンド、スクリプト等）を防ぐための検証を

 行う。

 (2)受信ファイルのウイルスチェック

 ・クライアントから受信するファイルに対してウイルススキャンやマルウェア検知

 を行うことが望ましい。

 (3)レート制限／DoS対策

 ・過剰なリクエストや攻撃的なアクセスからサービスを保護するため、レート制限

 やスロットリングを適用する。

 (4)API Gateway／リバースプロキシによる公開制御

 ・外部公開される APIに対して、ゲートウェイやリバースプロキシを活用し、

 アクセス制御、認証・認可の集中管理、リクエストのフィルタリングを行う。

32

 ⑧移行対応（EDI通信手順 → Web API）

 (1)概念のマッピング

 ・「接続先 ID」や「送受信 BOX」といった EDI 固有の概念を、API のエンド

 ポイントやリソース設計に対応させる。これにより、クライアント側の設定変更

 や業務フローへの影響を抑えつつ、API 環境に移行する。

 (2)接続試験環境の提供

 ・クライアントが本番切替前に APIを検証できるよう、専用の接続試験環境を用意

 する。テスト用データやシナリオを整備し、実際の運用に近い形で動作確認が行

 えることが望ましい。

 (3)EDI通信手順との並行稼働

 ・移行期間中は、必要に応じて EDIと Web API の並行稼働を許容する。

 これにより、移行中のトラブルや業務停止リスクを低減できる。並行稼働に伴う

 データ整合性や重複処理に対する設計も併せて検討することが望ましい。

 (4)移行スケジュールと切替手順の明確化

 ・移行計画、段階的切替の手順、関係者への周知を明確化する。切替時の停止時間

 やデータ移行方法、障害発生時のリカバリ手順もあらかじめ設計する。

 ■A-2.システム構成

 ＜項目説明＞

 API ゲートウェイ：認証・レート制限・ルーティングを担う。

 Web APIアプリケーション：RESTエンドポイントの実装本体。

 ファイル受信・登録・変換・応答処理などを行う。

 認証サーバ：アクセストークンの発行など、API セキュリティ全般を担う。

 EDI エンジン：業務データを管理する。

 ■A-3.API仕様設計

 ①リクエスト例

 PUT /api/v1.x/files/sample HTTP/1.1

 Host: edi-center.com

 Authorization: Bearer abcdef123456

 Content-Type: application/octet-stream

 X-Filename: order_20250801.csv

 X-File-Type: text/csv

33

 X-Message-Id: MSG-20250801-000123

 Content-Length: 1234

 ---バイナリデータ---

 ②レスポンス例

 HTTP/1.1 200 OK

 Content-Type: application/json

X-Message-Id: MSG-20250801-000123

 {

 "id": "abc123",

 "fileName": "order_20250801.csv",

 "fileType": "text/csv",

 "size": 1234,

 "uploadedAt": "2025-08-01T08:21:00Z"

 }

 ■A-4.メッセージ仕様

 メッセージは、EDIにおけるフォーマット仕様、ファイル命名ルール、文字コー

 ドおよび改行コードの取り扱いに準拠するものとする。

 ■A-5.認証・認可方式

 ①認証方式

 Web API を EDI用途で利用する場合、ユーザーによるログイン操作を伴わないマシン

 間連携が主となるため、OAuth2の中でも「クライアント ID／クライアントシーク

 レット」によってトークンを発行するクライアントクレデンシャル認証方式を採用す

 る。

 ②認証フロー

 ・クライアントは、センターが発行した「client_id」と「client_secret」を

使って、認証サーバに「access_token」を要求する。

 ・認証サーバは資格情報を検証し、短時間有効な「access_token」を返却する。

 ・クライアントは、そのトークンを使って APIを呼び出す

 ③トークン取得 API

 (1)エンドポイント仕様

メソッド：POST

 パス：/oauth2/token

 Content-Type：application/x-www-form-urlencoded

 (2)リクエストパラメータ

 grant_type：client_credentials

 client_id：発行された ID（センターが事前払い出し）

 client_secret：発行されたシークレット（センターが事前払い出し）

 (3)リクエスト例

34

 POST /oauth2/token HTTP/1.1

 Host: auth.edi-center.com

 Content-Type: application/x-www-form-urlencoded

 grant_type=client_credentials&

 client_id=client-001&

 client_secret=XYZsecret987654321

 (4)レスポンス例

 {

 "access_token": "eyJhbGciOiJIUzI1NiIsInR...",

 "token_type": "Bearer",

 "expires_in": 3600

 }

 ④認可方式

 認可については、複雑なアクセス制御は実施せず、従来の EDIで採用されているセン

 ター側による一元的な管理方式に準拠する。

 ■A-6.エラー設計

 API はエラー発生時に、HTTP ステータスコードとともに以下の形式で JSONレスポンス

 を返却する。HTTP ステータスコードについては「2.3.技術的要素」の「⑧ステータスコ

ード」を参照されたい。

 ①エラーレスポンス例

 {

 "error": {

 "code": "E4001",

 "message": "ファイル IDが指定されていません。",

 "detail": "fileId is required in the path.",

 "retryable": false,

 "timestamp": "2025-08-01T10:15:00+09:00"

 "trace_id": "ab12cd34ef56"

 }

 }

 ＜項目説明＞

 code：センターで定義された独自エラーコード

 message：エラー概要（運用担当者向け）

 detail：英語の詳細情報（必要であれば）

 retryable：再送可能なエラーかどうか（true/false）

 timestamp：発生日時

 trace_id：トレース用 ID

 ※「code」には EDIにおけるエラーコードをセットされたい。

35

 ■A-7.ログ設計

 ログについては、EDIサービスと統合的に管理できるよう、取得および連携を

 行う。一般的なログの種類は以下の通り。

 アクセスログ：API単位、HTTPリクエストなど

 アプリケーションログ：業務処理、ファイル検証など

 認証ログ：トークン取得・失敗など

 エラーログ：例外発生時に詳細記録

 ■A-8.テスト計画

 一般的なテストの種類は以下の通り。

 単体テスト：各モジュールの正当性を検証

 結合テスト：モジュール連携の整合性

 API テスト：REST API 仕様に対する動作検証

 業務シナリオテスト：ファイル送受信のビジネス整合性

 異常系テスト：異常入力や失敗時の耐性評価

 負荷テスト：同時接続／大容量ファイル等の耐性検証

 セキュリティテスト：トークン漏洩、スコープ逸脱などの確認

 運用・監視テスト：ログ・監視・通知設計の実働確認

 ■A-9.APIツールの活用

 Web APIを安定的かつ効率的に運用するためには、API ゲートウェイに加えて、設計・開

発・運用・監視の各段階を支援するツール群を適切に導入することが望ましい。

 Web APIを内製するにあたってこれらのツールを理解、活用することで、API の品質を維

持しつつ、ライフサイクル全体を通じた管理を容易にすることができる。

主なカテゴリと役割を以下に示す。

区分 主なツール・機能 概要・活用例

API ゲートウェイ 認証・認可、トラフィック制限、アクセス制

御、ログ取得、バージョン管理等を行うツー

ル。AWS API Gateway など。

クライアントからのリクエストを一

元的に制御し、API 公開を安全に実

現する中核コンポーネント。

API 設計・ドキュ

メント化ツール

API をデプロイする前にデザイン、文書化、

テストするための支援を行うツール。

OpenAPI（Swagger）、Postman など。

API 仕様を定義・共有し、設計書と

実装を整合させる。クライアント向

けドキュメントの自動生成にも利用

できる。

テストツール Postman、Newman、Jmeter など。

※API 設計・ドキュメント化ツールでカバー

可能

API の機能テスト・回帰テストを自

動化し、変更時の影響確認を容易に

する。

API ライフサイク

ル管理ツール

API の設計から廃止までのライフサイクル全

体を管理するツール。MuleSoft Anypoint

設計、公開、バージョン管理、廃止

までの API ライフサイクルを統合的

36

Platform、Apigee、WSO2 API Manager など。 に管理する。

API 監視・分析ツ

ール

API のパフォーマンス、使用状況、エラーレ

ポートなどを監視し、分析するためのツー

ル。Datadog、Prometheus、ELK Stack など。

稼働状況や応答性能、利用傾向を可

視化し、障害検知や改善活動に活用

する。

4.1.2.運用担当者向け
 Web APIを EDI用途で提供する際の運用にあたっては、EDI 同様に、日常的な監視や障害

対応、データ保全、定期運用作業を計画的に実施することが望ましい。サービスレベルは

現在提供中の EDI を踏襲しつつ、Web API の特性を考慮する必要がある。

 ■B-1.モニタリング・監視

 EDI に加えて Web API 基盤も監視対象となるため、監視範囲は従来より広範になること

に注意が必要である。システムの稼働状況、リソース使用状況、API 応答時間などを常

時監視し、死活監視やジョブ監視に加え、異常値検知や閾値超過時のアラート通知を設

定することが重要である。

 ■B-2.障害対応

 システム環境が広範になるため、障害発生時には原因の特定や影響範囲の評価が複雑に

 なる点に注意が必要である。復旧手順をマニュアル化し、再送や代替ルートの利用、関

 係者への通知など、事前に定義された手順に沿った運用を行うことが重要である。

 ■B-3.データ保全とリカバリ

 通信エラーなどによる処理中断やデータ損失に備え、バックアップと復元手順を整備す

 ることが望ましい。データ再投入（リトライ）をどの段階で実施するか？（EDI エンジ

 ンで行うか、API基盤で行うか）を明確にし、障害発生時の代替処理を含むリカバリ手

順を設計段階で検討しておくことが重要である。リカバリ手順は複雑化を避け、可能な

限りシンプルな仕組みにしておくことが望ましい。

 ■B-4.定期運用業務

 日常的な運用業務として、ユーザーからの問い合わせ対応やファイル再送処理を含む運

 用補助作業を計画的に実施することが求められる。あわせて、ログ確認や証跡管理、シ

 ステムのメンテナンス作業も定期運用業務の一環として位置付けるとよい。さらに、

 ユーザー自身による照会を可能とする証跡管理機能を提供し、センター側担当者の運用

 負荷を低減する仕組みを整備しておくことが望ましい。

37

4.2.クライアント側

4.2.1.システム開発者向け
 クライアント側環境は、センター側が提供する Web API を利用するための実行環境や運

 用機能を準備することが求められる。ここでは、一般的に入手が容易な環境を想定し、構

 成例を提示する。また、EDI通信プロトコルが備えている機能をクライアント自身で実

装・運用する必要がある点を考慮する。

 以下に、一般的に必要となる主な要素を示す。

（実際の環境や要件に応じて追加・変更が必要な場合がある）

＜想定環境＞

OS Windows 11 Professional

ブラウザ Google Chrome

開発言語 Python

その他補足情報 APIクライアントは基幹業務システムと切り離す、連携する。

 ■C-1.機能

 ①開発環境・実行環境

 ・Windows 11上に Python 環境を構築し、API 実行に必要なライブラリ

（例：requests、httpx）を導入する。

 ・ライブラリのバージョン管理を行い、API 仕様変更やセキュリティ更新に備える。

 ・APIクライアント処理（リクエスト／レスポンス処理、エラー処理）を実装する。

 ②API クライアント処理

 ・リクエスト／レスポンス構造のバリデーション（JSON スキーマチェック等）を行

 う。

 ・HTTPステータスや業務エラーコードに応じたエラーハンドリングを設計する。

 ・通信エラーやタイムアウト発生時のリトライ方針を明確化する。

38

 ・タイムアウト設定や接続プール管理を行い、高負荷時の安定性を確保する。

 ③認証・認可

 ・OAuth 2.0による認証処理を実装し、トークン取得および自動更新を行う。

 ・アクセストークンのキャッシュや期限管理を適切に行う。

 ・センター側が提供する EDIにおける権限管理に従い、必要に応じて適切な情

 報を提供する。

 ④通信・セキュリティ対応

 ・HTTPS（TLS1.2 以上）による暗号化通信を行い、サーバ証明書の正当性を検証す

 る。

 ・証明書や認証情報を安全に保管し、期限切れや漏洩に備える。

 ・入力値検証やインジェクション対策、受信ファイルのウイルスチェックなどを実施

 する。

 ⑤トランスレータ

 ・自社業務システムへのデータ連携を考慮し、フォーマット変換や各種コード変換を

 行うトランスレータの導入を検討する。

 ⑥データ保全・ログ取得

 ・送受信したデータは適切なエリアに必要な期間保存する。あわせてハッシュ値によ

 る改ざん検知を行う。

 ・送信ログ、取引番号、リクエスト IDなどを記録し、センター側のログと突き合わせ

 て証跡を確保する。

 ・ログは利用者自身が参照可能な形で管理し、トラブルシューティング等に活用す

 る。

 ■C-2.リクエスト仕様

 以下に、シンプルな送受信サンプルコードを提示する。

 ①ポイント

 (1)XMLファイル添付

 ・multipart/form-data を使用してファイルを送信する。

 (2)ログ管理

 ・成功・失敗・エラーをログに記録し、MessageID で追跡可能とする。

 (3)リトライなし

 ・単回送信のみを前提とする。

 (4)安全な通信

 ・HTTPS と OAuth2.0 を利用する。

 (5)運用補助

 ・ファイル存在チェックを行い、将来的にハッシュ検証や改ざんチェックを追加可

 能な設計とする。

 あくまでサンプルであり、実際の環境や要件に応じて適宜改変して利用すること。

39

–--

②Pythonによるデータ受信サンプルコード

–--

import requests

from datetime import datetime

import uuid

import os

==========================

設定値（事前に EDIサービス事業者から提供される情報を設定）

==========================

API_BASE_URL = "https://api.ediservice.example.com/v1"

CLIENT_ID = "client_id"

CLIENT_SECRET = "client_secret"

SAVE_DIR = "received_orders"

LOG_FILE = "order_receive.log"

os.makedirs(SAVE_DIR, exist_ok=True)

==========================

アクセストークン取得

==========================

def get_access_token():

 payload = {

 "grant_type": "client_credentials",

 "client_id": CLIENT_ID,

 "client_secret": CLIENT_SECRET,

 }

 response = requests.post(f"{API_BASE_URL}/oauth2/token", data=payload)

 response.raise_for_status()

 return response.json()["access_token"]

==========================

ログ出力

==========================

def log_result(message_id, status, info):

 timestamp = datetime.now().isoformat()

 with open(LOG_FILE, "a", encoding="utf-8") as f:

 f.write(f"{timestamp} | {message_id} | {status} | {info}\n")

==========================

ファイル受信

==========================

def receive_order_file(access_token):

 message_id = str(uuid.uuid4()) # トラッキング用 ID

40

 url = f"{API_BASE_URL}/orders/file/latest" # ファイル取得エンドポイント

 headers = {

 "Authorization": f"Bearer {access_token}",

 "X-Message-ID": message_id

 }

 try:

 # ファイルをダウンロード

 response = requests.get(url, headers=headers, timeout=30, stream=True)

 if response.status_code == 200:

 file_name =

f"order_{datetime.now().strftime('%Y%m%d_%H%M%S')}_{message_id}.xml"

 file_path = os.path.join(SAVE_DIR, file_name)

 with open(file_path, "wb") as f:

 for chunk in response.iter_content(chunk_size=8192):

 f.write(chunk)

 print(f"受信成功: {file_path}")

 log_result(message_id, "SUCCESS", file_path)

 return file_path

 else:

 print(f"受信失敗 (Status={response.status_code})")

 log_result(message_id, "FAIL", response.text)

 return None

 except requests.RequestException as e:

 print(f"受信エラー: {e}")

 log_result(message_id, "ERROR", str(e))

 return None

==========================

メイン処理

==========================

if __name__ == "__main__":

 token = get_access_token()

 print("Access Token 取得成功")

 received_file = receive_order_file(token)

 if received_file:

 # 必要に応じて、受信したファイルを解析・処理

 print(f"ファイルを保存しました: {received_file}")

–--

41

–--

③Pythonによるデータ送信サンプルコード

–--

import requests

from datetime import datetime

import uuid

import os

==========================

#設定値（事前に EDI サービス事業者から提供される情報を設定）

==========================

API_BASE_URL = "https://api.ediservice.example.com/v1"

CLIENT_ID = "client_id"

CLIENT_SECRET = "client_secret"

ORDER_FILE = "order.xml" # 送信する XML ファイルパス

LOG_FILE = "order_send.log"

==========================

アクセストークン取得

==========================

def get_access_token():

 payload = {

 "grant_type": "client_credentials",

 "client_id": CLIENT_ID,

 "client_secret": CLIENT_SECRET,

 }

 response = requests.post(f"{API_BASE_URL}/oauth2/token", data=payload)

 response.raise_for_status()

 return response.json()["access_token"]

==========================

ログ出力

==========================

def log_result(message_id, status, info):

 timestamp = datetime.now().isoformat()

 with open(LOG_FILE, "a", encoding="utf-8") as f:

 f.write(f"{timestamp} | {message_id} | {status} | {info}\n")

==========================

ファイル送信

==========================

def send_order_file(access_token, file_path):

 message_id = str(uuid.uuid4()) # トラッキング用 ID

 url = f"{API_BASE_URL}/orders/file/upload" # ファイル送信エンドポイント

 headers = {

42

 "Authorization": f"Bearer {access_token}",

 "X-Message-ID": message_id

 }

 if not os.path.exists(file_path):

 print(f"ファイルが存在しません: {file_path}")

 log_result(message_id, "FAIL", "File not found")

 return False

 with open(file_path, "rb") as f:

 files = {

 "file": (os.path.basename(file_path), f, "application/octet-stream")

 }

 try:

 response = requests.post(url, headers=headers, files=files, timeout=30)

 if response.status_code == 200:

 print(f"送信成功: {file_path}")

 log_result(message_id, "SUCCESS", response.text)

 return True

 else:

 print(f"送信失敗 (Status={response.status_code})")

 log_result(message_id, "FAIL", response.text)

 return False

 except requests.RequestException as e:

 print(f"送信エラー: {e}")

 log_result(message_id, "ERROR", str(e))

 return False

==========================

メイン処理

==========================

if __name__ == "__main__":

 token = get_access_token()

 print("Access Token 取得成功")

 success = send_order_file(token, ORDER_FILE)

 if success:

 print(f"ファイルを送信しました: {ORDER_FILE}")

–--

43

4.2.2.運用担当者向け
 EDI と同様に、Web API を利用した EDIにおいても、日常的な監視や障害対応、データ保

全、定期運用作業が必須である。センター側が提供する Web API環境の仕様や運用補助機

能を活用しつつ、EDIで行われていた運用業務を拡張する形で運用業務を設計することが

望ましい。

 以下に、考慮すべきポイントを示す。

 ■D-1.モニタリング・監視

 ・API 通信状態、応答時間、エラー発生状況を日常的に監視する。

 ・通信エラー検知や閾値超過時のアラート通知を設定し、早期対応が可能な仕組みを

 整備する。

 ・各種ログを取得し、原因特定や再送対応に役立てる。

 ■D-2.定期運用業務

 ・データ送受信はジョブスケジュール機能を活用し、自動実行環境を検討する。

 ・バックエンドの基幹業務システムとの連携を考慮する。

 ・ユーザーからの問い合わせ対応やファイル再送処理など、日常的な運用補助業務を計

 画的に実施する。

 ・ログ確認や証跡管理、アプリケーションや依存ライブラリの更新作業を定期運用業務

 に組み込む。

 ・ユーザー自身が照会可能な証跡管理機能を提供し、運用担当者の負荷を低減する仕組

 みを整備する。

 ■D-3.障害対応・リカバリ

 ・障害発生時の原因特定や影響範囲の評価を迅速に行える手順を準備する。

 ・通信エラーや認証エラーに対するリトライ、代替手段の利用などを事前に検討し、

 決められた手順に従って対応する。

 ・センター側サポート窓口への問い合わせや関係者通知の手順を整備する。

 ■D-4.運用作業・定期更新

 ・Windows Update やライブラリの更新を計画的に実施し、脆弱性を放置しない。

 ・センター側から提供される証明書更新や API バージョン変更に合わせて、

 事前に検証・対応を行う。

4.3.テスト項目
 Web APIを利用した EDI環境を安定稼働させるために、本番運用前に多面的なテストを

 実施することが望ましい。

以下に、開発段階で考慮すべき主なテスト項目例を整理する。

 ①通信レベルテスト

 ・API エンドポイントに HTTPS 接続できるかを確認する。

 ・HTTP ステータスコード（200、400、401、500 など）が仕様通り返却されるかを

 検証する。

 ・リクエスト／レスポンスのヘッダ情報（Content-Type、Authorization）が正しく

 設定・取得できるかを確認する。

44

 ②セキュリティテスト

 ・OAuth2.0 のアクセストークン取得／更新が正しく動作するかを確認する。

 ・有効期限切れや不正なトークン使用時に適切に拒否されるかを検証する。

 ・サーバ証明書の正当性（有効期限、中間証明書の連鎖）を確認する。

 ・通信データの盗聴・改ざん防止が TLSで担保されているかをテストする。

 ③機能テスト

 ・正常なファイル送信で、サーバ側がデータを受理することを確認する。

 ・受信 API から取得したデータが正しく格納・利用できるかを検証する。

 ・取引番号や MessageID による重複検出が機能するかをテストする。

 ・ファイル添付（multipart/form-data）の形式が仕様通りであるかを確認する。

 ④異常系テスト

 ・ネットワーク切断やタイムアウト時にエラーが検知され、ログに記録されるかを

 確認する。

 ・不正な形式（タグ欠落、文字コード不一致など）でのファイル送信時にエラー応答が

返るかを検証する。

 ・誤った認証情報でアクセスした場合、アクセス拒否されるかを確認する。

 ・サーバ側障害時（HTTP 500）にクライアント側が想定通りのエラーハンドリング

 を行うかを確認する。

 ⑤性能・負荷テスト

 ・一定サイズ以上のファイルの送受信時間を計測する。

 ・大量データを連続送受信した際に応答遅延や処理落ちが発生しないかを検証する。

 ・同時接続（例：50クライアント同時リクエスト）時のサーバ応答を確認する。

 ・長時間稼働させた際にメモリリークやリソース枯渇がないかを検証する。

5.Appendix

5.1.導入時チェックシート
 Web APIを EDI用途で導入・運用する際に、設計・実装・運用の各フェーズで確認すべ

 き事項の一例を、参考としてチェックシート形式で整理、掲載する。

センター側・クライアント側の双方が共通の観点で準備状況を確認することで、導入プロ

ジェクト全体の品質および運用安定性の確保につながれば幸いである。

なお、Web API技術やセキュリティ要件は将来的に変更される可能性があるため、定期的

に内容を見直し、最新の運用実態に即した形に更新することが望ましい。

45

1. 目的・要件定義

 1.1. 導入目的の明確化 従来の EDI システムからの移行か？

 1.2. 対象業務範囲 対象業務は？

 1.3. 対象取引先 全ての取引先 or 特定の取引先？

 取引先の Web API 対応状況はどうか？

2. 技術要件・アーキテクチャ

 2.1. API 提供方式 RESTful API での提供に適しているか？

 ファイル送受信の具体的なエンドポイントは？

（例: /upload, /download）

 2.2. 通信プロトコル HTTPS で要件を満たしているか？

 2.3. データフォーマット ファイル形式は何か？（EDI ファイル形式など）

 ファイルサイズ、送受信の頻度、データ量は？

 文字コードは？

2.4. 内部連携 Web API が受け取ったデータと既存の基幹システムや EDI

システムとの連携方法は？

 EDIシステムとの変換（マッピング）ツールや機能は必要

か？

 2.5. パフォーマンス要件 ピーク時のリクエスト数、データ転送速度の目標値は？

 応答時間の目標値は？

3. セキュリティ

 3.1. 認証方式 OAuth による認証で要件を満たしているか？

 3.2. 認可方式 ロールベースアクセス制御（RBAC）か？

 API キーやクライアント ID ごとにアクセス可能な範囲を

限定するか？

 3.3. 通信の暗号化 HTTPS を必須として問題ないか？

 TLS バージョン 1.2 以上で要件を満たしているか？

 3.4. データ改ざん検知・防止 入力値検証のルールは明確か？（必須）

 ハッシュ値やデジタル署名によるデータの完全性検証を

導入するか？

3.5. 脆弱性対策 SQL インジェクション、XSS などの一般的な Web 脆弱性対

策は適切か？

46

 定期的な脆弱性診断は実施するか？

3.6. アクセス制御・ネットワ

ークセキュリティ

ファイアウォール、WAF の導入は考慮されているか？

 IP アドレス制限は行うか？

 DDoS 攻撃対策は考慮されているか？

4. 運用・保守

4.1. ロギング APIのアクセスログ、エラーログ、処理ログは適切に取得

されているか？

 ログの保存期間、保存場所、アクセス権限は明確か？

4.2. モニタリング APIの稼働状況（稼働率、応答時間など）は監視されてい

るか？

 エラー発生時やパフォーマンス低下時のアラート通知体

制は確立されているか？

4.3. エラーハンドリング エラー時のレスポンスコード（HTTP ステータスコード）

とメッセージは明確か？

 リトライ処理やエラー通知の仕組みはどうか？

 4.4. バージョン管理 API のバージョンアップ計画は考慮されているか？

 旧バージョンのサポート期間は？

4.5. 障害対応 障害発生時の連絡体制、復旧手順、取引先への通知方法

は明確か？

 BCP/DR（事業継続計画/災害復旧）は考慮されているか？

 4.6. 運用体制 API を運用・保守する部門は決まっているか？

 SLA（サービス品質保証）は考慮されているか？

5. 取引先対応

 5.1. ドキュメント提供 API仕様書、利用マニュアルなどを整備・提供できるか？

 開発者向けポータルサイトの提供は考慮されているか？

5.2. テスト環境 取引先が接続テストを行えるステージング環境を提供で

きるか？

5.3. 移行計画 従来の EDIから Web API型 EDIへの移行スケジュールと、

取引先との調整方法は？

 並行稼働期間は設けるか？

 5.4. サポート体制 取引先からの問い合わせ対応、技術サポート体制は構築

47

されているか？

6. 費用

 6.1. 開発費用 API サーバー、連携機能の開発費用

 ドキュメント、テスト環境整備費用

6.2. インフラ費用 サーバー（クラウド/オンプレミスか）、ネットワーク、

ストレージ費用

 セキュリティ関連製品（WAF など）の費用

 6.3. 運用・保守費用 モニタリングツールなどの費用

 人件費

6.4. ライセンス費用 ミドルウェアやソフトウェアを利用する場合のライセン

ス費用

 6.5. 通信費用 インターネット回線費用

7. 法規制・コンプライアンス

 7.1. 電子帳簿保存法対応 電子取引データの保存は必要か？

7.2. 個人情報保護法対応 個人情報を取り扱う場合、適切なセキュリティ対策が講

じられているか？

7.3. 業界固有の規制 業界団体等が定める EDI に関するガイドラインや要件に

適合するか？

改定は必要か？

7.4. 契約 取引先との間で EDI 利用に関する契約や覚書を締結する

か？

締結済みの場合、改定は必要か？

48

EDI 用途における Web API 利用ガイドライン

2026年 1月 発行

インターネット EDI 普及推進協議会
 Japan internet EDI Association（JiEDIA）

 本資料に関する問い合わせは、下記までお願いします。

JiEDIA 事務局：一般社団法人 情報サービス産業協会

https://www.jisa.or.jp/tabid/2821/Default.aspx

〒101-0047

東京都千代田区内神田 2-3-4

 S-GATE大手町北 6F

TEL：03-5289-7651（代表）

FAX：03-5289-7653

